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The effect of basic flow density gradients on the supersonic wall modes were

investigated in Part I of this analysis. In that investigation only the 2-D modes
were studied. Tam and Hu investigated the 3-D modes in a confined vortex
sheet and reported that the first 2-D Class A mode (A4p;) had the highest
growth rate compared to all other 2-D and 3-D modes present in the vortex
sheet for that particular set of flow parameters. They also showed that this
result also held true for finite thickness shear layers with 6, < 0.125. For free
shear layers, Sandham and Reynolds showed that the 3-D K-H mode became
the dominant mode for M, > 0.6. Jackson and Grosch investigated the effect
of crossflow and obliqueness on the slow and fast modes present in a M, > 1
environment and showed that for certain combination of crossflow and wave
angles the growth rates could be increased by up a factor of 2 with respect
to the 2-D case. Two major differences between the confined and unconfined
cases are the type of modes present in the two cases and the restriction on the
spanwise wavenumber in the confined case. The modes present in a confined
supersonic 2-D shear layer are of the acoustic type (wall modes) as opposed to
the vorticity modes present in the free shear layer, and these wall modes have

higher growth rates than the vorticity modes. Also, due to the side walls, the
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confined shear layer only has discrete spanwise wavenumber solutions.

The case studied here is a confined shear layer shown in Part I. All solution
procedures and basic flow profiles are the same as in Part I. The effect of density
gradients on the 3-D modes present in the density ratios considered in Part I

are investigated.

I1. Flow Model and Governing Equations

As in Part I, the model which is studied here is a confined compressible
shear layer formed by two gases with different velocities, densities and prop-
erties, but with the same constant pressure. Figure 1 shows the configuration
used in this analysis. The subscript 1 is used for the quantities related to the
high speed freestream and the subscript 2 for the quantities of the low speed
freestream. The streamwise coordinate is z, the spanwise coordinate is z, and
the cross-stream coordinate is y. The aspect ratio of the channel is taken to
be 2 (B* = 2H*). For simplicity, free slip wall boundary conditions are as-
sumed at the walls of the channel. It is also assumed that the flow is inviscid,
non-conducting, and non-diffusive. For this situation the governing equations
are the Euler equations for a two species system.

The equations are non-dimensionalized using the fast (upper) freestream



quantities, pf, U, T;" and the height of the channel, H*. Thermodynamic
properties are also non-dimensionalized by the upprer freestream thermody-
namic properties, c;, . and R}. Based on this non-dimensionalization, the den-
sity ratio %% and the velocity ratio %% are defined as p, and U,, respectively.
Once the equations are non-dimensionalized, they are linearized around a par-
allel basic flow (5(y), P, U(y), Ca(y)). These basic flow quantities can be found
by solving the compressible boundary layer equations using a similarity vari-
able for Pr = Sc¢ = Le == 1. This procedure was discussed in Part I.

Normal modes are assumed for these infinitesimal disturbances with the

form:

¢ = 4(y) expli(ka + Bz — wt)) (2.1)

where ¢ is the eigenfunction, k and [ are the streamwise and spanwise wave
numbers and w is the frequency. In general k, § and w are complex. Once these
normal modes are substituted into the equations of motion, a single O.D.E.

can be found for the disturbance pressure eigenfunction:

- 2
D5} Dj+ {M‘VMI (w=-k0)Y? -k - p}p=0 (22)



where

5= Cpa?a + ¢, (1 — ?ﬂj
CuaCa + cvb(l - Ca)

and M] and 7] are, respectively, the Mach number and the ratio of specific

heats of the high speed freestream.

The above equation is solved subject to the boundary conditions

Df) =0 Y= :i:§ (2.3(1)
Dp=0 z=4=1 (2.3b)

which come from the y and z-momentum equations by setting the normal ve-
locity at the walls to zero. It is the latter boundary condition that leads to a
discrete spectrum of spanwise wavenumbers. Therefore the spanwise wavenum-

ber becomes:

B =mn (2.4)



for an aspect ratio of two, and the disturbance pressure takes the form:

?'(2,9,2,t) = p(y) cos(mnz) expli(ke — wt)] (2.5)

¢

Outside the shear layer the vortex sheet solutions hold. They can be written

p(y) = Acos[Ai(1~y)] 6<y<1 (2.6a)
p(y) = Beos[Ao(1+y)] -—-6>y2>-1 (2.6b)
where
A = [M2(w - kUD? = k2 = (mr)Y? (2.7a)
N = (M2 (%) (0 = K032 4 = (mm)} (2.75)

Following Mack, we define a 3-D wave number as:

k= (k® 4+ (mn)H} (2.8)

one can also define a complex convective Mach number, M.(y) as:



Me(y) = \[ p?g L(w - kD)2 (2.9)

therefore equation (2.2) can be written as:

2kDu —}—Dﬁ}D]‘J n l~c2{Mc2 _ 1}1*, =0 (2.10)

2.
Dp+{(w—ka) 5

This form of the O.D.E. for the disturbance pressure eigenfunction clearly
shows the role of the parameter M, and its significance in the type of solutions
possible. Now, outside the shear layer for a neutral wave this convective Mach

number is a constant real value. i.e. (M¢] = M., M. = M),

M, =M (kUi;_ w) = Mjcos(1 — Cppy) (2.11a)
and
Mo = M (a%) cosy(Ug — Cphz’) (2.11b)
2

where Cpp, = k“’:, and ¢ is the wave angle. As shown for the 2-D case,
when M, > 1 non-inflectional neutral solutions of the type Cpp, = 1 are

possible and when M, > 1 then non-inflectional neutral solutions of the type

C

phz = U are possible.



Based on the above definitions and the results obtained in Part I, the

following cases are investigated:

Casel : p: = 1.398 m=1

Casell : p2 = 1.398 m=3
Caselll : p2 = 3.060 m=1
CaselV : p2 = 3.000 m=3

In all the cases, the fast stream gas is He and the slow stream gas is No.

Also, the convective Mach number is 1.836, and the velocity ratio is 0.276.

Results and discussion

Case 1

As shown in Part I, the basic flow profiles have three generalized inflection

points giving rise to three separate types of modes. These modes are all



supersonic wall modes and the necessary condition for their existence is a
trapped region of supersonic flow with respect to their phase speeds. In order
to use this condition, the maximum convective Mach number in the channel,
| Mc(y)|maz, is plotted in the frequency and real wavenumber plane. Figure 2
shows the contours of this maximum convective Mach number. The dashed
lines correspond to |Mc(y)|mez < 1. Any modes which are present within
the ‘wedge’ (|Mc(y)|maz = 1) are subsonic with respect to both streams and
therefore are not acoustic in nature. Figure 3 shows the real wavenumber vs.
frequency of all the modes present when the spanwise wavenumber is fixed to
B8 = w. The fine dashed line in the form of a wedg= is the |Mec(y)|maz = 1
line. Two modes originate in that wedge and are subsonic with respect to
both streams until they exit the wedge. Figure 4 shows the phase speed of the
modes present for this case. Several differences arise when we compare Figure
4 to Figure 6 in Part I. First, we now have a mode present in the limit as
the frequency goes to zero. This mode is originally subsonic, and as it turns
supersonic with respect to the fast stream it is very much like the combination
of the first three 2-D Class B modes (upper portion of the phase speed curves
in Figure 6 in Part I). This mode will be called the D;; mode. The first Class
C mode Cj; also starts from within the wedge described above, but its phase

speed exits the wedge very quickly and only slightly changes the characteristics



of the mode. The rest of the‘ Class A, B and C modes are all entirely acoustic
modes and their phase speeds are similar to those inb the 2-D case. One must
note that the first two Class A and C modes are different in the sense that
each has ‘picked up’ the other’s phase speed curve. Figures 5a,b,c and d show
the growth rate of the Class A,B,C and D modes respectively. The growth
rate curve for the A1 mode has only one peak and its maximum growth rate
is a few percent higher than than that of the 2-D mode. The growth rate curve
for the A3 mode is almost identical to its 2-D counterpart despite the fact
that the wave angle at the maximum growth rate of for this mode is about 30
degrees. Mode A1; has very small growth rates (as do modes By, Bj9, Bi3)
and is not shown. Since the Class A and C modes have switched portions of
their phase speed curves with one-another, one must also discuss the growth
rates of the Class C modes with conjunction to the Class A modes. Instead
of identifying the 2-D and 3-D counterparts of each growth rate peak, one can
make a general statement that except for the Ajg, in the region where the
waves are 3-D, the growth rates are lower than those found for the 2-D case.
In fact mode Cyj has a growth rate which is about 25% lower than its 2-D
counterpart. The growth rate curves of the class B modes are very much like
the 2-D modes. The Dj;; mode present for this spanwise wave number has

one subsonic growth rate peak and three supersonic peaks. The supersonic



portion of the phase speed curve for this mode is very much like the curve for
the Bp; mode for a density ratio of about 1.65 where the first three Class B
modes have undergone a resonant interaction. In general, if one plots all the
growth rates of the 2-D and 3-D modes (8 = ), ope will find that the Copi has

the highest growth rate.

Case 11

In this case, the density ratio is the same as above, but the spanwise
wavenumber is now equal to 37. Figure 6 shows the maximum convective
Mach number contours. The wedge corresponding to the |Mc(y)|mazr = 1
contour is much larger than that in Case I. This implies that the region over
which purely subsonic modes can exists is much greater. Figure 7 shows the
real wavenumbers of the modes present when the spanwise wave number is
set to 3m. Now both modes which start within the subsonic wedge have zero
frequency limits and both will be labeled as Class D modes. Figure 8 shows
the phase speed of the modes for this case. There are Class A,B and C modes
with very small growth rates within this frequency region and are not shown.
Figure 9a shows the growth rates for some of the Class A and B modes and
Figure 9b for the Class D modes. Very much like Case I, it can be concluded

that the 3-D modes have lower growth rates than the 2-D modes. Therefore

10



for the test case parameters the 2-D, the Cp; mode has the highest growth

rate. Tam and Hu also found similar results for their Ag; mode.

Case I1I

This case corresponds to a density ratio of 3.0 for which the basic flow
profiles only have one generalized inflection point. Thus, as shown in Part I,
only Class A and B modes are present in the 2-D analysis. Figure 10 shows
the real wavenumber for the modes present. Only one mode exist in the
subsonic wedge and is present in the zero frequency limit. The phase speed
vs. frequency is given in Figure 11 and Figures 12a and b show the growth
rates of the Class A modes and the D;; mode respectively. The 3-D Class
A modes for this case have smaller growth rates than their 2-D counterparts.
Very much like Case I, the D11 modes’ supersonic continuation is very similar
to the By; mode present for these parameters . Figure 13 shows the growth
rates of both modes on the same graph. It can be seen from this figure that
the maximum growth rate peak for the 3-D mode is slightly higher than the
2-D mode. More about the growth rate of this mode will be said in the next
section.

Note that the Class B modes were not shown due to fact that they possess

very small growth rates.

11



Case IV

The parameters for this case are the same as in Case III, however the span-
wise wavenumber is increased to 37. Figures 14 and 15 show the wavenumber
and phase speed of the modes present. Again, like Case II the sonic wedge is
much greater than for the smaller wavenumber (Case III). Figure 16 and 17
show the growth rates of the Class A and the Dj; modes. The Class A modes
have much lower growth rates than their 2-D counterparts. However, the D1,
mode a higher growth rate (by 5 %) than the By; mode. Also, the frequency
for the maximum growth rate has shifted to the left. In order to investigate
this effect further, the mode Dj; for 8 = 57 is calculated and its growth rate
along with the D11 modes for 8 = 7 and 37 and the By1 modes are plotted in
Figure 18. It is clear from this figure that the rise in the growth rate due to the
larger growth rates in the subsonic regions of these modes eventually stops and
actually the growth rates start to decrease beyond a spanwise wavenumber of
om.

Based on all the results shown for all the cases considered, one can conclude
that 3-D effects are not that important in the sense that they don’t give rise
to much larger growth rates as is the case in free shear layer. However, they

do give rise to modes which have almost the same phase speeds and growth

12



rates as the 2-D modes which can give rise to non-linear resonant interaction

in the evolution of the full 3-D shear layer.
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